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Abstract

Botulinum neurotoxin serotype A (BoNTA) causes a life-threatening neuroparalytic disease known as botulism that could
afflict large, unprotected populations if the toxin were employed in an act of bioterrorism. Current post-exposure therapy is
limited to symptomatic treatment or passive immunization that is effective for treating infant botulism at a cost of US
$45,300 per treatment regimen. Antibodies can neutralize the extracellular but not the intracellular BoNTA. Moreover,
antibody production, storage, and administration in a mass casualty scenario pose logistical challenges. Alternatively, small-
molecule inhibitors of BoNTA endopeptidase (BoNTAe) are sought to antagonize the extracellular or intracellular toxin.
While several such molecules reportedly demonstrated efficacy in protecting cells against BoNTA, there is scant information
to show that small molecules can significantly protect mammals against BoNTA. Herein we report the development of
effective small-molecules BoNTAe inhibitors with promising in vivo pharmacokinetics. One such molecule has an in vivo half-
life of 6.5 hours and is devoid of obvious sign of toxicity. Pre-treatment with this molecule at 2 mg/kg protected 100% and
70% of treated mice against BoNTA at 5 times of its median-lethal dose during the periods of 2 and 4 half-lives of the
inhibitor, respectively. In contrast, 40% and 0% of untreated mice survived during the respective periods. Similar levels of
protection were also observed with two other small molecules. These results demonstrate that small molecules can
significantly protect mice against BoNTA and support the pursuit of small-molecule antagonists as a cost-effective
alternative or as an adjunct to passive immunity for treating botulism.
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Introduction

Seven distinct serotypes (A to G) of the spore-forming Clostridium
botulinum have been characterized based upon production of
structurally and functionally unique botulinum neurotoxins
(BoNTs) [1]. Such toxins can cause a life-threatening neuropar-
alytic disease known as botulism [1] by inhibiting normal release of
the neurotransmitter acetylcholine at peripheral neuromuscular
junctions and thereby causing prolonged flaccid paralysis, serious
medical sequelae, or death [1]. Despite its toxicity, the purified
and diluted BoNT serotype A (BoNTA) can be harnessed to treat
cholinergic nerve and muscle dysfunctions, as well as for cosmetic
treatment of facial wrinkles [2,3]. Even in carefully controlled
clinical scenarios, however, overdoses of BoNTA can occur and
result in systemic botulism [4]; such incidents may rise as the
number of therapeutic indications increases [5]. Mishaps also may

occur involving the use of unregulated or counterfeit formulations
of BoNTA at unknown concentrations [6]. Moreover, due to its
long in vivo half-life (t1/2 .31 days [7]), BoNTA is a recognized
biological weapon that has been sought or stockpiled by both small
terrorist cells and large industrial countries [8,9]. Recently, it has
been projected that botulism could afflict a large number of
unprotected civilians if a food supply, for example the milk
production and distribution chain [10], were intentionally
contaminated by the toxin in an act of bioterrorism. There is an
urgent need for small-molecule BoNTA inhibitors as effective and
safe post-exposure treatment for BoNTA intoxication to respond
to food poisoning, accidental clinical overdoses, and mass-casualty
situations.
Current post-exposure therapy is limited to symptomatic

treatment or passive immunization that is effective for treating
infant botulism [11] at a cost of US $45,300 per treatment regimen
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[12]. Antibodies can neutralize the extracellular but not the
intracellular BoNTA. Moreover, antibody production, storage,
and administration in a mass casualty scenario pose logistical
challenges. To antagonize the extracellular or intracellular
BoNTA, small molecules [13–20] have been developed to inhibit
BoNTA endopeptidase (BoNTAe) – the catalytic domain of
BoNTA that specifically cleaves a critical component of the
neurosecretory apparatus required for acetylcholine release [21].
While several such molecules have demonstrated efficacy in
protecting cells against BoNTA [13,15,20], there is scant
information to show that small molecules can significantly protect
mammals against BoNTA, although an in vivo study of small-
molecule BoNTAe inhibitors has been reported [22].
Herein, we report the development of effective small-molecule

BoNTAe inhibitors with in vivo half-live of 4–6 hours. These
inhibitors showed 100% and 70% of protection of mice against
BoNTA at 5 times of its median-lethal dose during the periods of 2
and 4 half-lives of the inhibitors at an inhibitor concentration of
2 mg/kg, respectively. We also discuss the prospect of small-
molecule inhibitors as a cost-effective alternative or as an adjunct
to passive immunity for treating botulism.

Results

Design and Synthesis
We previously reported a serotype-specific, small-molecule

BoNTAe inhibitor, H3H (structure shown in Figure 1), which has
a Ki

app value of 3.860.77 mM and was resulted from our lead
identification and optimization as summarized in Figure 1
[14,23]. One drawback of H3H is insolubility in water. In
optimizing H3H for water solubility and higher potency in
inhibiting BoNTAe, we encountered problems in derivatizing
H3H caused by chemical instability under acidic conditions
(pH,2.0) that was presumably due to the proton at position 3 of
the indole ring. These problems hampered the structural
modifications of H3H guided by insights from computer
simulations or the crystal structures of inhibitor-bound BoNTAe
complexes.
Recognizing the synthesis step as the rate-determining step of

the optimization, we set out to first establish a facile synthetic
scheme that can lead to a group of inhibitor analogues and then
use computer simulations of the inhibitor-bound BoNTAe
complexes to prioritize the syntheses of the analogues. This was
different from what we did earlier, namely, first finding alternative
analogues on the basis of computer simulations and then
determining whether the alternatives were synthetically accessible.
Accordingly, we developed a simple synthetic scheme shown

Figure 2 that begins with a known intermediate used for the
synthesis of H3H [14]. The new scheme, which readily leads to a
handful of new analogues of H3H by varying substituents R1, R2,
and R3, enabled us to address the problems of water solubility and
chemical instability of H3H by introducing hydrophilic groups
and replacing the position-3 proton of the indole ring with a
fluorine atom [24], respectively. Preliminary multiple molecular
dynamics simulations (10 1-ns-long simulations) suggested that two
of such analogues, F3A and F4H (structures shown in Figure 1),
might be able to interact favourably with the active site of
BoNTAe. The simulation results were later supported by the
extended multiple molecular dynamics simulations (10 10-ns-long
simulations) described below.
Therefore, we made F4H and F3A with relative ease according

to the scheme shown in Figure 2. Gratifyingly, we found that both
F4H and F3A are water soluble at concentrations up to 5.0 mM
and stable under acidic conditions.

Computer Simulation
Subsequent extended multiple molecular dynamics simulations

(10 10-ns-long simulations) of BoNTAe in complex with F4H or
F3A suggested that both inhibitors have (1) the hydroxamate
coordinating the zinc ion embedded in the active site, (2) the
hydroxamate forming a hydrogen bond to Glu224, (3) the cation-
pi interaction of the thiophene-substituted phenyl group with
Arg363, (4) the pi-pi interactions of the thiophene-substituted
phenyl group with Phe194 and Tyr366, (5) the interaction of the
ketone oxygen atom with Asp370 that is bridged by at least one

Figure 1. The development process of H3H, F4H and F3A as
small-molecule BoNTAe inhibitors.
doi:10.1371/journal.pone.0010129.g001

Botulinum Toxin Inhibitors
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water molecule, and (6) the cation-pi and pi-pi interactions of the
indole-substituted phenyl group with Lys66 and Gln162, respec-
tively (Figure 3). The main differences between the two inhibitor
complexes are that (1) the thiophene-substituted phenyl group has
stronger pi-pi interactions (judged by distance) with Tyr366 and
Phe194 in F4HNBoNTAe than in F3ANBoNTAe, (2) Tyr366 forms
a hydrogen bond with the carbonyl oxygen atom of the
hydroxamate in F4HNBoNTAe but not in F3ANBoNTAe, and (3)
the interaction between the ketone oxygen atom and Asp370 is
bridged by one or two water molecules in F4HNBoNTAe or
F3ANBoNTAe, respectively. The coordinates of the simulation-
generated F4HNBoNTAe and F3ANBoNTAe complexes are
available in Datasets S1 and S2, respectively.

Biological Evaluation
High performance liquid chromatography (HPLC)-based BoN-

TAe inhibition assays [25] showed that F4H is as potent as H3H
in inhibiting BoNTAe, and F3A is less potent thanH3H (Table 1).
Furthermore, H3H, F4H, and F3A showed no acute toxicity to
mice. We therefore performed in vivo pharmacokinetic studies on
all three inhibitors. Interestingly, the exposures of F4H and F3A to
mice are nearly the same but slightly less than that of H3H, as
measured by the area under the time-concentration curve (AUC),
even though the maximum concentration (Cmax) and the
concentration 24 hours after one dose of a test compound (C24)
for each inhibitor are different (Table 1). The nearly identical half-
lives (t1/2<6 hours) of F4H and F3A are longer than that of H3H

Figure 2. Synthetic scheme for F4H and F3A.
doi:10.1371/journal.pone.0010129.g002

Figure 3. Overlay of simulation-generated models of F4HNBoNTAe (yellow) and F3ANBoNTAe (green). For clarity the water molecules
that bridge the interaction between Asp370 and the ketone oxygen atom are not displayed, but these water molecules along with other active-site
water molecules are included in the coordinates of Datasets S1 and S2.
doi:10.1371/journal.pone.0010129.g003

Botulinum Toxin Inhibitors
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(t1/2<4 hours). In this context, we further evaluated all three
inhibitors using a standardized mouse model of botulism [26] to
determine if they can protect mice against either extracellular or
intracellular BoNTA during the period of 8 half-lives of the test
inhibitor in a single-dose experiment.
Groups of Balb/c mice were given one 2-mg/kg intraperito-

neal injection of H3H, F4H, F3A, or dimethyl sulfoxide as a
control and, after 30 minutes, each mouse was challenged
intraperitoneally with BoNTA at 5 times of its median-lethal
dose. All mice were examined twice daily for survival, behaviour,
motor activity, breath, and extraocular symptoms of botulism.
Each of the three inhibitors significantly (p,0.05) increased
survival at different time intervals (Figure 4). Importantly, all
mice treated with any of the three inhibitors survived during the
12-hour period (,2t1/2 for F4H) after the BoNTA challenge.
During this period, the inhibitors are expected to work optimally
according to the time course of the inhibitor concentration in
mouse plasma. In contrast, 60% of the untreated mice died
during the 12-hour period. Consistently, all untreated mice died
24 hours (,4t1/2 for F4H) after the challenge, whereas 70% and
60% of the F4H-treated mice survived 24 hours and 48 hours
(,8t1/2 for F4H) after the challenge, respectively (Figure 4).
Furthermore, 10% of the mice treated with any of the three
inhibitors survived without symptoms of botulism until they were
euthanized on day 5 (Figure 4).

Discussion

Small-molecule BoNTAe inhibitors have been pursued actively
by different research groups [13–20], but concern remains with
regard to the feasibility of the small-molecule therapy for botulism,
primarily because (1) BoNTA has a long in vivo half-life (t1/2 .31
days [7]), (2) small-molecule BoNTAe inhibitors with low
nanomolar potencies are difficult to obtain [19], and (3) there
has been only one article to date reporting an in vivo study of small-
molecule BoNTAe inhibitors [22]. The work described above
offers the following insights into the prospect of the small-molecule
botulism therapy, although additional studies are needed to
determine if the observed protection of mice against BoNTA by
the pre-treatment of F4H, H3H, or F3A involves inhibition and
clearance of extracellular toxin depots, uptake by intoxicated
neurons, or both routes.
F4H,H3H, and F3A have in vivo half-lives of 4–6 hours, and all

mice treated with any of the three inhibitors survived during the
12-hour period (,2t1/2 for F4H) after the BoNTA challenge. It is
therefore plausible that the problem with a long in vivo half-life of
BoNTA can be mitigated by treating with an F4H-like compound
one dose per day for multiple days. This treatment could be
shortened if the compound were used in combination with long-
lasting antibodies [27] that are effective to neutralize the
extracellular toxin.

F4H showed 8266% inhibition of BoNTAe at the inhibitor
concentration of 20 mM. However, with one 2-mg/kg intraperi-
toneal injection, F4H showed 100, 70, and 60% protection of
mice against BoNTA during the 12-, 24-, and 48-hour periods
after the toxin challenge, respectively. This suggests that small-
molecule BoNTAe inhibitors with low nanomolar potencies might
not be necessary; inhibitors with low micromolar or high
nanomolar potencies may suffice.
All three different inhibitors protected 100% of treated mice

during the 12-hour period (,2t1/2 for F4H) and 10% of the mice
during the standard 5-day observation period, with a single
intraperitoneal injection of the inhibitor against a supralethal
BoNTA challenge. Furthermore, 90% of the F3A-treated mice,
40% of the H3H-treated mice, and 40% of the F4H-treated mice
died 48 hours after the toxin challenge, respectively (Figure 4).
The in vivo potencies appeared to be consistent with the in vitro
potencies of the three inhibitors (Table 1). These results support
the hypothesis that protection of mice against BoNTA can be
achieved by treatment with a small-molecule BoNTAe inhibitor
and are incentive to improve BoNTAe inhibitor structures and
dosing regimen to optimize in vivo efficacies.
In summary, the present work demonstrates that small-molecule

inhibitors can significantly protect mice against BoNTA and
encourages the pursuit of small-molecule BoNTAe inhibitors for
alternative or complementary treatment of botulism.

Materials and Methods

The animal experiments were performed with an approved
protocol by the Institutional Animal Care and Use Committee
at the Walter Reed Army of Institute of Research (IACUC
number: B02-08) that is in compliance with the Animal Welfare
Act and other United States federal statutes and regulations
involving animals and adheres to principles stated in the Guide
for the Care and Use of Laboratory Animals, NRC Publication,
1996 edition.

Reagents
Hexanes (Hex), ethyl acetate (EtOAc), and trifluoroacetic acid

(TFA) were purchased from Fisher Scientific (Pittsburgh, PA).
BSA, HEPES buffer, and zinc chloride were purchased from
Sigma-Aldrich (St. Louis, MO). Dithiothreitol was obtained from
BioRad (Hercules, CA). All commercially available reagents were
used as received. Recombinant BoNTAe was provided by Dr.
Leonard Smith of the United States Army Medical Research
Institute of Infectious Diseases, Fort Detrick, MD.

Chemical Synthesis
General Description. The 1H NMR (400 MHz) and 13C

NMR (100 MHz) spectra were recorded on a Mercury 400
spectrometer from Varian (Palo Alto, CA). Chemical shifts are

Table 1. In Vitro Inhibition of BoNTAe and in Vivo Pharmacokinetic Data for H3H, F4H, and F3A.

Inhibitor % BoNTAe inhibition1 Cmax (ng/mL) C24 (ng/mL) AUClast (hrNng/mL) T1/2 (hr)

H3H 7864 497.4 3.0 1547.3 4.35

F4H 8266 738.4 ,0.5 1386.4 6.50

F3A 4761 256.0 7.0 1385.9 6.25

1The inhibition assays were conducted at an inhibitor concentration of 20 mM.
doi:10.1371/journal.pone.0010129.t001

Botulinum Toxin Inhibitors
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reported in ppm using either tetramethylsilane or the solvent peak
as an internal standard. Data are reported as follows: chemical
shift, multiplicity (s = singlet, brs = broad singlet, d = doublet,
t = triplet, brt = broad triplet, q = quartet, m = multiplet),
coupling constant, and integration. Low-resolution mass spectra
were recorded using either Hewlet Packard 5973 Mass
Spectrometer with SIS Direct Insertion Probe (Palo Alto, CA) or
Waters ZQ/EMD 1000 Mass Spectrometer (Milford, MA). High-
resolution mass spectra were obtained on a Bruker BioTOF II

ESI. IR spectra were obtained on a ThermoNicolet Avatar 370
FT-IR (Waltham, MA) using KBr pellet. Medium pressure liquid
chromatography (MPLC) was performed with Biotage SP-1
(Charlottesville, VA) using silica gel (EM Science, 230–400
mesh). HPLC was carried out on a 5-mm C18 column
(analytical: 4.606250 mm, HyperClone; semi-preparative:
21.26250 mm, Gemini) from Phenomenex (Torrance, CA)
eluting with linear gradient of 80% of solution A (1000 mL of
H2O and 1 mL of TFA) to 100% of solution B (100 mL of H2O,
900 mL of MeCN and 1 mL of TFA) over 20 minutes at a flow
rate of 1.0 mL/min (analytical) or over a specified amount of time
at a flow rate of 10 mL/min (semi-preparative) with UV detection
at 254 nm on a Beckman Coulter System Gold HPLC system
(166P detector and 125P solvent module) from Beckman Coulter
(Brea, CA). KCN is highly toxic and must be handled with
extreme care by trained personnel.

Methyl 2-(2-bromo-5-(1-(4-(1,3-dioxoisoindolin-2-yl)butyl)-
3-fluoro-2-phenyl-1H-indole-6-carbonyl)thiophen-3-yl)ace-
tate (2). To a solution of methyl 2-(2-bromo-5-(1-(4-
(1,3-dioxoisoindolin-2-yl)butyl)-2-phenyl-1H-indole-6-carbonyl)-
thiophen-3-yl)acetate (1 in Figure 2) [14] (156 mg, 0.24 mmol) in
3 mL CH2Cl2 was added 1-fluoropyridinium triflate (78 mg,
0.28 mmol), and then the mixture was stirred at room
temperature for 6 days. The resulting mixture was diluted with
40 mL Et2O, washed with brine (2610 mL), dried over MgSO4,
filtered, and then concentrated in vacuo. MPLC purification
(Hex:EtOAc/9:1) gave 2 (66 mg, 41%) as a yellow solid foam. 1H
NMR (CDCl3) d 7.94 (s, 1H), 7.7827.75 (m, 2H), 7.7127.63 (m,
4 H), 7.57 (s, 1H), 7.5027.39 (m, 5H), 4.25 (t, J= 7.2 Hz, 2H),
3.71 (s, 3H), 3.69 (s, 2H), 3.49 (t, J= 6.6 Hz, 2H), 1.6721.60 (m,
2H), and 1.5021.43 (m, 2H) (see Figure S1 for proton NMR
spectrum of 2); 13C NMR (CDCl3) d 187.42, 170.49, 168.57,
143.91, 141.87 (1JCF= 244.0 Hz), 136.06, 135.98, 135.02, 134.26,
132.30 (3JCF= 7.0 Hz), 132.08, 131.54, 129.95, 129.17, 128.44
(3JCF= 3.0 Hz), 127.60 (2JCF= 21.0 Hz), 123.48, 122.10, 122.20,
120.17 (2JCF= 16.0 Hz), 117.04 (3JCF= 3.0 Hz), 112.66, 52.61 (q,
J=10.7 Hz), 43.64, 37.23, 35.07, 27.32, and 25.76; IR cm21

2921.2, 1707.6, and 1393.0; LRMS-EI m/z 672 and 674 (12%
each, [M+]), 160 (100%, [CH2NPhth+]); HRMS-ESI calculated for
C34H26BrFN2O5SNa

+ [M+Na+] 695.0622, found 695.0619.
Methyl 2-(5-(1-(4-(1,3-dioxoisoindolin-2-yl)butyl)-3-fluoro-2-

phenyl-1H-indole-6-carbonyl)-2-(4-hydroxyphenyl)thiophen-3-
yl) (3x). A mixture of 2 (42 mg, 0.062 mmol), Pd(PPh3)4 (8 mg,
0.007 mmol), CsF (28 mg, 0.18 mmol), 4-hydroxyphenylboronic acid
(13 mg, 0.094 mmol), and H2O (200 mL) in 1,2-dimethoxyethane
(8 mL) was degassed with N2 for 10 minutes and then refluxed for
6 hours. The resulting suspension was poured into H2O (10 mL) and
then extracted with 70 mL Et2O. The organic layer was washed with
brine (2610 mL), dried over MgSO4, and then concentrated in vacuo.
MPLC purification (Hex:EtOAc/5:1) of the residue gave 3x as a
yellow solid foam (34 mg, 79%). 1H NMR (CDCl3) d 7.99 (s, 1H),
7.7827.66 (m, 7H), 7.5027.38 (m, 7H), 6.94 (d, J=8.4 Hz, 2H),
6.27 (s, 1H), 4.26 (t, J=7.0 Hz, 2H), 3.69 (m, 5H), 3.48 (t, J=6.8 Hz,
2H), 1.6821.59 (m, 2H), and 1.5021.43 (m, 2H) (see Figure S2 for
proton NMR spectrum of 3x); 13C NMR (CDCl3) d 188.36, 171.87,
168.57, 157.05, 149.86, 141.93 (1JCF=244.6 Hz), 141.28, 137.87,
137.80, 134.24, 132.38, 132.35, 132.10, 131.03, 130.98
(3JCF=3.0 Hz), 129.98, 129.16, 128.56 (3JCF=3.0 Hz), 127.28
(2JCF=15.3 Hz), 125.25, 123.49, 121.42, 119.98 (2JCF=15.3 Hz),
116.93, 116.17, 112.64, 52.53 (q, J=9.9 Hz), 43.61, 37.27, 34.49,
27.35, and 25.77; IR cm21 3391.2, 2929.4, 2851.8, 1711.7, and
1442.0; LRMS-EI m/z 687 (100%, [M+]), 439 (65%); HRMS-ESI
calculated for C40H31FN2O6SNa

+ [M+Na+] 709.1779, found
709.1787.

Figure 4. The survival curves of mice treated with placebo or a
BoNTAe inhibitor. F3A: top, H3H: middle, and F4H: bottom.
doi:10.1371/journal.pone.0010129.g004
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2-(5-(1-(4-Aminobutyl)-3- fluoro-2-phenyl-1H-indole-6-car -
bonyl)-2-(4-hydroxyphenyl)thiophen-3-yl)-N-hydroxyacetamide
(F4H). To a stirred solution of 3x (34 mg, 0.049 mmol) in THF/
MeOH (3 mL/5 mL), 1 mL of 50% aqueous NH2OH was added,
followed by a catalytic amount (two crystals) of KCN. The resulting
mixture was stirred for 23 hours at room temperature, and then
filtered through a short Celite column.HPLC purification of the filtrate
gave F4HNTFA as a yellow amorphous solid (20 mg, 60%). The semi-
preparative and analytical HPLC retention times of F4HNTFA
are 14.00 and 14.57 minutes, respectively (see Figure S3 for
chromatograms of F4HNTFA before and after the HPLC
purification). 1H NMR (CD3OD) d 8.11 (s, 1H), 7.78 (s, 1H), 7.73
(d, J=8.4 Hz, 1H), 7.66 (dd, J=1.2, 8.4 Hz, 1H), 7.5927.58 (m, 4H),
7.5427.50 (m, 1H), 7.39 (d, J=8.6 Hz, 2H), 6.92 (d, J=8.6 Hz, 2H),
4.36 (t, J=7.2 Hz, 2H), 3.51 (s, 2H), 2.79 (t, J=7.2 Hz, 2H),
1.7621.69 (m, 2H), and 1.5021.43 (m, 2H) (see Figure S4 for proton
NMR spectrum of F4H); 13C NMR (CD3OD) d 188.80, 169.26,
160.90 (q, CF3CO2H, 2JCF=36.6 Hz), 158.74, 150.11, 141.75
(1JCF=243.1 Hz), 140.72, 137.85, 132.22, 132.15 (3JCF=5.3 Hz),
130.73, 130.53, 129.85, 129.02, 128.96, 128.45 (3JCF=3.8 Hz),
127.30 (2JCF=20.6 Hz), 123.86, 120.58, 119.64 (2JCF=16.0 Hz),
116.65, 115.71, 113.10, 43.29, 39.18, 32.29, 27.11, and 24.70; IR
cm21 3438.5, 3227.7, 1677.0, 1608.9, 1551.6, 1428.1, 1250.1, 1202.9,
1138.2; LRMS-EI m/z 558 (48%, [M+]), 309 (36%); HRMS-ESI
calculated for C31H29FN3O4S

+ [M+H+] 558.1857, found 558.1901.
Methyl 2-(2-(3-aminophenyl)-5-(1-(4-(1,3-dioxoisoindolin-

2-yl)butyl)-3-fluoro-2-phenyl-1H-indole-6-carbonyl)thiophen-
3-yl)acetate (3y). A mixture of 2 (20 mg, 0.03 mmol), Pd(PPh3)4
(7 mg, 0.006 mmol), CsF (13 mg, 0.09 mmol), 3-aminophenylboronic
acid (6 mg, 0.04 mmol), and H2O (60 mL) in 1,2-dimethoxyethane
(4 mL) was degassed with N2 for 10 minutes and then refluxed until all
the starting ester had been consumed (3 hours). The resulting black
suspension was poured into H2O (10 mL) and then extracted with
40 mL Et2O. The organic layer was washed with brine (2620 mL),
dried overMgSO4, and then concentrated in vacuo. MPLC purification
(Hex:EtOAc/5:1) of the residue gave 3y as a yellow solid foam (15 mg,
74%). 1H NMR (CDCl3) d 7.99 (s, 1H), 7.7827.76 (m, 2H),
7.7127.67 (m, 5H), 7.5127.37 (m, 5H), 7.24 (t, J=7.6 Hz, 1H), 6.88
(d, J=7.2 Hz, 1H), 6.83 (s, 1H), 6.73 (d, J=7.2 Hz, 1H), 4.26 (t,
J=7.0 Hz, 2H), 3.72 (s, 2H), 3.69 (s, 3H), 3.48 (t, J=6.8 Hz, 2H),
1.6621.58 (m, 2H), and 1.5021.45 (m, 2H) (see Figure S5 for proton
NMR spectrum of 3y); 13C NMR (CDCl3) d 188.12, 171.73, 168.51,
149.72, 147.07, 141.92 (1JCF=245.0 Hz), 141.74, 137.49, 134.19,
134.09, 132.46, 132.36 (3JCF=6.0 Hz), 132.13, 130.36, 129.96,
129.15, 129.05, 128.58 (3JCF=3.0 Hz), 127.21 (2JCF=10.7 Hz),
123.46, 121.39, 119.94 (3JCF=6.1 Hz), 119.71, 116.89, 115.80
(2JCF=15.3 Hz), 112.59, 52.41, 43.61, 37.25, 34.50, 27.36, and
25.77; IR cm21 3456.5, 3366.6, 2945.7, 1711.7, 1601.4 and 1393.0;
LRMS-EI m/z 686 (100%, [M+]); HRMS-ESI calculated for
C40H33FN3O5S

+ [M+H+] 686.2119, found 686.2128.
2-(5-(1-(4-Aminobutyl)-3-fluoro-2-phenyl-1H-indole-6-car-

bonyl)-2-(3-aminophenyl)thiophen-3-yl)-N-hydroxyacetamide
(F3A). To a stirred solution of 3y (15 mg, 0.022 mmol) in THF/
MeOH (0.5 mL/0.5 mL), 0.5 mL of 50% aqueous NH2OH was
added, followed by a catalytic amount (two crystals) of KCN. The
resulting mixture was stirred for 16 hours at room temperature, and
then filtered through a short Celite column. HPLC purification
(eluting time: 20 minutes) of the filtrate gave F3AN2TFA as a yellow
solid foam (12 mg, 71%). The semi-preparative and analytical
HPLC retention times of F3AN2TFA are 13.12 and 12.25 minutes,
respectively (see Figure S6 for chromatograms of F3AN2TFA before
and after the HPLC purification). 1H NMR (CD3OD) d 8.12 (s, 1H),
7.82 (s, 1H), 7.74 (d, J=8.4 Hz, 1H), 7.69 (d, J=8.4 Hz, 1H),
7.6627.51 (m, 8H), 7.4427.42 (m, 1H), 4.37 (t, J=6.8 Hz, 2H),

3.54 (s, 2H), 2.78 (t, J=7.2 Hz, 2H), 1.7621.68 (m, 2H), and
1.4921.41 (m, 2H) (see Figure S7 for proton NMR spectrum of
F3A); 13C NMR (CD3OD) d 188.54, 168.75, 160.22 (q, CF3CO2H,
2JCF=39.7 Hz), 146.93, 142.57, 141.73 (1JCF=243.1 Hz), 137.34,
134.89, 134.07, 132.54, 132.20 (3JCF=5.4 Hz), 131.88, 130.72,
129.86, 129.08, 128.99, 128.38 (3JCF=3.1 Hz), 128.29, 127.57
(2JCF=20.5 Hz), 122.62 (2JCF=32.0 Hz), 120.69, 119.83
(2JCF=15.3 Hz), 116.65, 116.23 (q, CF3CO2H, 1JCF=287.4 Hz),
113.08, 43.28, 39.15, 32.28, 27.06, and 24.67; IR cm21 3432.0,
2925.3, 1679.0, 1200.9, 1135.5; LRMS-EI m/z 557 (60%, [M+]),
309 (62%); HRMS-ESI calculated for C31H30FN4O3S

+ [M+H+]
557.2017, found 557.2040.

in Vitro Evaluation
Assays of the BoNTAe activity were done at 37uC and

contained 0.5 mM substrate, 0.5–1.5 mg/mL recombinant BoN-
TAe, 40 mM HEPES, 1 mM dithiothreitol, 25 mM ZnCl2,
0.5 mg/mL BSA, and 0.05% tween at pH 7.3. Substrate for
BoNTAe was an SNAP-25 fragment containing residues 187–203
with N- and C-termini acylated and amidated, respectively [28].
Inhibitors were dissolved in dimethyl sulfoxide at 10 times the final
assay concentration, then diluted into the assay mixture containing
substrate, followed by addition of the endopeptidase (i.e., inhibitor
and endopeptidase were not preincubated). Assay times and
endopeptidase concentrations were adjusted so that less than 10%
of the substrate was hydrolyzed. Assays were stopped by
acidification with TFA and analyzed by reverse-phase HPLC as
described previously [25].

in Vivo Evaluation
Pharmacokinetics Study. The in vivo pharmacokinetic

parameters were determined by dosing 6 Balb/c mice
intraperitoneally with a test inhibitor at 2 mg/kg at which
concentration no obvious sign of toxicity was observed. Blood
was collected by cardiac puncture at 0.5, 1, 2, 4, 8, and 24 hours
and the plasma was separated and kept frozen at 280uC until
processing. Each experiment was repeated three times. The
plasma was thawed and extracted with two volumes of ice-cold
acetonitrile to precipitate plasma proteins and release the
inhibitor. The organic phase was analyzed by liquid
chromatography mass spectrometry and the concentration of the
inhibitor was determined based on a standard curve run in
parallel. The stability of the inhibitor in acetonitrile was
determined prior to analyzing pharmacokinetic samples.
Pharmacokinetic values were determined with WinNonLin
software from Pharcite based on the plasma concentration curve.

Protection Study. The protection studies were carried out by
using a standardized mouse model of botulism [26]. Briefly, groups
of Balb/c mice were given a single 2-mg/kg intraperitoneal
injection of H3H, F4H, F3A or dimethyl sulfoxide as a control
and, after 30 minutes, each mouse was challenged
intraperitoneally with BoNTA at 5 times of its median-lethal
dose. Dimethyl sulfoxide was used as a carrier vehicle because
H3H is water insoluble. All mice were examined twice daily for
survival, behaviour, motor activity, breath, and extraocular
symptoms of botulism. The numbers of mice in the treated and
control groups were 10 and 5, respectively. Survival curves were
constructed based on the number of survivors and statistically
analyzed using GraphPad Prism 5.0 (Graphpad Software, Inc.).

Computer Simulations
Model Preparation. The atomic charges of F4H and F3A

were obtained according to the RESP procedure [29] with ab initio
calculations at the HF/6-31G*//HF/6-31G* level using the
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Gaussian 98 program [30]. The starting structure of
inhibitorNBoNTAe was generated by (1) manually docking the
inhibitor into the BoNTAe active site and (2) replacing the active-
site zinc ion with the tetrahedral zinc ion using the cationic
dummy atom approach [23,31–33]. In the manual docking, the
hydroxamate group was placed near the tetrahedral zinc ion, the
thiophene-substituted phenyl group was placed near Arg363, and
the ammonium group was placed near Glu64. The BoNTAe
structure used for the docking was taken from the crystal structure
of an inhibitor-bound BoNTAe (Protein Data Bank Code: 3BOO
[34]) whose conformations of missing residues 62–67 were taken
from the crystal structure of a BoNTAe mutant in complex with
SNAP-25 (Protein Data Bank Code: 1XTG [35]). For BoNTAe,
His223 and His227 were treated as HIN (histidinate) [32,36,37];
His39, His230, and His269 were treated as HID; all other His
residues were treated as HIP; Glu261 and Glu351 were treated as
GLH [32,36,37]. A total of 111 crystallographically determined
water molecules (named HOH) located inside the enzyme were
included for simulations. The topology and coordinate files of the
water-containing inhibitorNBoNTAe complex were generated by
the PREP, LINK, EDIT, and PARM modules of the AMBER 5.0
program [38]. The complex was refined by energy minimization
using a dielectric constant of 1.0 and 100 cycles of steepest-descent
minimization followed by 100 cycles of conjugate-gradient
minimization. The refined complex was solvated with 13,617
and 13,540 TIP3P water molecules (named WAT) [39] for F4H
and F3A, leading to a system of 48,096 and 47,866 atoms,
respectively. The WAT molecules were obtained from solvating
the complex using a pre-equilibrated box of 216,000 TIP3P
molecules, whose hydrogen atom charge was set to 0.4170, where
any water molecule was removed if it had an oxygen atom closer
than 2.2 Å to any solute atom or a hydrogen atom closer than
2.0 Å to any solute atom, or if it was located further than 9.0 Å
along the x-, y-, or z-axis from any solute atom.

Multiple Molecular Dynamics Simulations. The solvated
complex system was energy-minimized for 100 cycles of steepest-
descent minimization followed by 100 cycles of conjugate-gradient
minimization to remove close van der Waals contacts in the system,
then heated from 0 to 300 K at a rate of 10 K/ps under constant
temperature and volume, and finally simulated independently with
a unique seed number for initial velocities at 300 K under constant
temperature and pressure using the PMEMD module of the
AMBER 8.0 program [40] with the AMBER force field (ff99SB)
[41,42]. All simulations used (1) a dielectric constant of 1.0, (2) the
Berendsen coupling algorithm [43], (3) a periodic boundary
condition at a constant temperature of 300 K and a constant
pressure of 1 atm with isotropic molecule-based scaling, (4) the
Particle Mesh Ewald method to calculate long-range electrostatic
interactions [44], (5) a time step of 1.0 fs, (6) the SHAKE-bond-
length constraints applied to all the bonds involving the H atom, (7)
saving the image closest to the middle of the ‘‘primary box’’ to the
restart and trajectory files, (8) formatted restart file, and (9) default
values of all other inputs of the PMEMD module. Ten different
molecular dynamics simulations (each lasted 10 ns) were carried out
for the BoNTAe in complex with F4H or F3A on a cluster of Apple
Mac Pros with 80 Intel Xeon cores (3.0 GHz).

Simulation Analysis. For each of the 10 simulations of
F4HNBoNTAe or F3ANBoNTAe, 100 instantaneous conformations
were saved at 10-ps intervals during the last 1-ns period. A total of
1,000 instantaneous conformations of F4HNBoNTAe or F3AN
BoNTAe from the 10 simulations were subjected to a cluster analysis
using the averagelinkage algorithm (epsilon=2.0 Å and RMS on
alpha-carbon atoms) [45] implemented in the PTRAJ module of the
AMBER 10 program [40]. Only one cluster of the BoNTAe

conformations was identified. All 1,000 instantaneous conformations
of F4HNBoNTAe or F3ANBoNTAe were subjected to a second-round
cluster analysis using the averagelinkage algorithm (epsilon=1.5 Å and
RMS on all atoms of F4H or F3A) [45]. This analysis identified 7 and
4 clusters for the F4H and F3A conformations, respectively. The
numbers of the F4H conformations in Clusters 1–7 are 200, 100, 423,
27, 150, 30, and 70, respectively; the numbers of the F3A
conformations in Clusters 1–4 are 600, 299, 1, and 100, respectively.
The representative conformations of F4HNBoNTAe and
F3ANBoNTAe from their most populated clusters overlay reasonably
well (see Figure 3) and are considered as plausible complex structures in
water. The coordinates of the representative conformations are
available from Datasets S1 and S2. The coordinates of other
conformations are available upon request.
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